Aircraft measurements over Europe of an air pollution plume from Southeast Asia – aerosol and chemical characterization
نویسندگان
چکیده
An air pollution plume from Southern and Eastern Asia, including regions in India and China, was predicted by the FLEXPART particle dispersion model to arrive in the upper troposphere over Europe on 24–25 March 2006. According to the model, the plume was exported from Southeast Asia six days earlier, transported into the upper troposphere by a warm conveyor belt, and travelled to Europe in a fast zonal flow. This is confirmed by the retrievals of carbon monoxide (CO) from AIRS satellite measurements, which are in excellent agreement with the model results over the entire transport history. The research aircraft DLR Falcon was sent into this plume west of Spain on 24 March and over Southern Europe on 25 March. On both days, the pollution plume was found close to the predicted locations and, thus, the measurements taken allowed the first detailed characterization of the aerosol content and chemical composition of an anthropogenic pollution plume after a nearly hemispheric transport event. The mixing ratios of CO, reactive nitrogen (NOy) and ozone (O3) measured in the Asian plume were all clearly elevated over a background that was itself likely elevated by Asian emissions: CO by 17–34 ppbv on average (maximum 60 ppbv) and O3 by 2–9 ppbv (maximum 22 ppbv). Positive correlations existed between these species, and a 1O3/1CO slope of 0.25 shows that ozone was formed in this plume, albeit with moderate efficiency. Nucleation mode and Aitken particles were suppressed in the Asian plume, whereas accumulation mode aerosols were strongly elevated and correlated with CO. The suppression of the nucleation mode was likely due to the large pre-existing aerosol surface of the transported larger particles. Supermicron particles, likely desert dust, were found in part of the Asian pollution plume and also in surrounding cleaner air. The aerosol light absorption coefficient was enhanced in the plume (average values for individual plume encounters Correspondence to: A. Stohl ([email protected]) 0.25–0.70 Mm−1), as was the fraction of non-volatile Aitken particles. This indicates that black carbon (BC) was an important aerosol component. During the flight on 25 March, which took place on the rear of a trough located over Europe, a mixture of Asian pollution and stratospheric air was found. Asian pollution was mixing into the lower stratosphere, and stratospheric air was mixing into the pollution plume in the troposphere. Turbulence was encountered by the aircraft in the mixing regions, where the thermal stability was low and Richardson numbers were below 0.2. The result of the mixing can clearly be seen in the trace gas data, which are following mixing lines in correlation plots. This mixing with stratospheric air is likely very typical of Asian air pollution, which is often lifted to the upper troposphere and, thus, transported in the vicinity of stratospheric air.
منابع مشابه
The impact of monsoon outflow from India and Southeast Asia in the upper troposphere over the eastern Mediterranean
A major objective of the Mediterranean INtensive Oxidant Study (MINOS) was to investigate long-range transport of pollutants (notably ozone precursor species). Here we present trace gas measurements from the DLR (German Aerospace Organization) Falcon aircraft in the eastern Mediterranean troposphere. Ten day backward trajectories and a coupled chemistry-climate model (ECHAM4) were used to study...
متن کاملEast Asian SO2 pollution plume over Europe – Part 1: Airborne trace gas measurements and source identification by particle dispersion model simulations
A large SO2-rich pollution plume of East Asian origin was detected by aircraft based CIMS (Chemical Ionization Mass Spectrometry) measurements at 3–7.5 km altitude over the North Atlantic. The measurements, which took place on 3 May 2006 aboard of the German research aircraft Falcon, were part of the INTEX-B (Intercontinental Chemical Transport Experiment-B) campaign. Additional trace gases (NO...
متن کاملTransport and Evolution of a Pollution Plume from Northern China: A Satellite-Based Case Study
[1] On 5 April 2005, during the East Asian Study of Tropospheric Aerosols: An International Regional Experiment (EAST-AIRE) aircraft campaign, heavy loadings of SO2 (20 ppb near ground, 1–3 ppb at 2 km altitude) and dust with aerosol optical depth of 1 were measured over Shenyang, an industrialized city 600 km NE of Beijing. In this study, Ozone Monitoring Instrument (OMI) and MODIS satellite s...
متن کاملAsian outflow and trans-Pacific transport of carbon monoxide and ozone pollution: An integrated satellite, aircraft, and model perspective
[1] Satellite observations of carbon monoxide (CO) from the Measurements of Pollution in the Troposphere (MOPITT) instrument are combined with measurements from the Transport and Chemical Evolution Over the Pacific (TRACE-P) aircraft mission over the northwest Pacific and with a global three-dimensional chemical transport model (GEOSCHEM) to quantify Asian pollution outflow and its trans-Pacifi...
متن کاملEvolution of Asian aerosols during transpacific transport in INTEX-B
Measurements of aerosol composition were made with an Aerodyne High Resolution Time-of-Flight Aerosol Mass Spectrometer (HR-ToF-AMS) on board the NSF/NCAR C-130 aircraft as part of the Intercontinental Chemical Transport Experiment Phase B (INTEX-B) field campaign over the Eastern Pacific Ocean. The HR-ToF-AMS measurements of non-refractory submicron aerosol mass are shown to compare well with ...
متن کامل